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Abstract: Essential oils (EOs) are a mixture of chemical compounds with a long history of use in
food, cosmetics, perfumes, agricultural and pharmaceuticals industries. The main object of this
study was to find chemical patterns between 45 EOs and antiprotozoal activity (antiplasmodial,
antileishmanial and antitrypanosomal), using different machine learning algorithms. In the analyses,
45 samples of EOs were included, using unsupervised Self-Organizing Maps (SOM) and supervised
Random Forest (RF) methodologies. In the generated map, the hit rate was higher than 70% and the
results demonstrate that it is possible find chemical patterns using a supervised and unsupervised
machine learning approach. A total of 20 compounds were identified (19 are terpenes and one
sulfur-containing compound), which was compared with literature reports. These models can be
used to investigate and screen for bioactivity of EOs that have antiprotozoal activity more effectively
and with less time and financial cost.

Keywords: essential oil; Cuban plants; machine learning analysis; antiprotozoal activity

1. Introduction

An essential oil (EO) is a concentrated plant secondary metabolite composed of a
mixture of volatile chemical compounds [1], with a long history of use in food, cosmetics,
perfumes, agricultural and pharmaceuticals industries [2]. In the last decade, almost
5000 articles related to uses of EOs have been published, with a positive increment of more
than 7% per year [3]. In this scenario, the scientific, economic, and biological importance of
EOs is growing as alternatives to synthetic compounds commonly used in industry [4–6].

In particular, numerous studies demonstrated the wide pharmacological spectrum
of EOs, including: antimicrobial [7,8], antifungal [9], antiparasitic [10], antiviral [10,11],
insecticidal [12], anticarcinogenic [13–16], immunomodulatory [17], anti-inflammatory and
antioxidant [14]. Nevertheless, the chemical composition of obtained EOs can unfortunately
be different depending on the chosen method, geographical origins, the season, the type
of soil and the agricultural conditions in which plants have grown. Thus, the same plant
could produce different EO chemical composition profiles and therefore display different
biological effects [3,8,14]. In this sense, some approaches have been used, such as the
‘chemotype concept’ with the aim to discern the bioactivity of EOs based on chemical
profile. However, more complex questions have emerged due to the high complexity in the
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chemical composition of EOs and interaction among constituents. Then, the role of each
single constituent and synergistic/antagonist effects among components remain unclear
in many potential EOs. During the last decade, computational studies using EOs have
been reported in the continuous search for new therapeutic drugs or lead compounds. In
particular, machine learning analysis has been used to identify new structures from EOs
with potential antibacterial [18] and antiviral [3] activities.

Recently, potential EOs from Cuban plants was reviewed, which a variable num-
ber of components (terpenes, aliphatic derivatives, sulfur-containing compound, phenyl-
propanoids, alkaloids and amine-type compounds) and different biological activities (an-
tiprotozoal, antibacterial, antifungal, anticancer, anthelmintic, larvicidal and insecticidal)
were identified. However, correlation of potentialities of these EOs with chemical enti-
ties could not be linked due to scarce number of pure compounds that were tested and
experiments related to synergistic/antagonistic effects were not found [19]. Then, in line
with those previous studies (which common compounds were identified from different
EOs with multiple biological effects), herein an extensive study of those EOs from Cuban
plants is reported, with the main goal of finding chemical patterns between 45 samples and
antiprotozoal activity, using unsupervised and supervised machine learning, which are
Self-Organizing Maps (SOM) and Random Forest (RF), respectively.

Kohonen’s self-organizing maps [20] are neural networks of the unsupervised type,
based on the functioning principle of the central nervous system of animals [21–24]. SOM
has competitive learning, with only one output neuron or local group of neurons that
provides the final response to a current input signal. The data presented in the input neuron
are mapped to the defined space of neurons with iterations and weight adjustments in a
typically two-dimensional array (Kohonen map). The most common way to demonstrate
the similarity in SOM is through the Euclidean distance between the vectors and the input
data vector [21–24].

The U-matrix, created by Vesanto and collaborators [24], is used to visualize the
SOM. This matrix allows the visualization and discrimination of the groups generated in
the SOM, from the Euclidean distances. This degree of similarity is plotted in the third
dimension generating a 3-D relief surface, in this way the clusters are represented in the
form of “depressions”, “valleys”, and “peaks”. The “depressions” and “valleys” of the relief
surface of the U-matrix represent neurons belonging to the same cluster, while neurons
that have a great distance from the adjacent neuron are represented by “peaks”, they are
cluster-discriminating neurons.

RF is an algorithm that will create several decision trees at random, thus obtaining a
forest where each tree will be used in the result. It is a robust and complex algorithm, which
can lead to a higher computational cost compared to others. A decision tree establishes
rules for decision making, that is, the algorithm will generate a structure like a flowchart
with “nodes” where a condition will be checked and if met, the flow follows one branch,
otherwise, it follows another, always leading to the nearest “node” where further decision-
making will take place, until the end of the tree. Thus, given a training set, the algorithm
will analyze the data and look for the best conditions and where to insert each data into the
flow [25–28].

In the literature, previous studies using these methods have been applied to EOs,
which have been useful to select antiviral and low toxic samples [3], antibiofilm formation
by Staphylococcus aureus [16,29], S. epidermidis [16] and Pseudomonas aeruginosa [18,30], as
different biological activities such as antiviral, anthelminthic, anti-inflammatory, anticancer,
antioxidant, antimicrobial, antifungal and cytotoxic activity [31]. However, the application
on EOs with antiprotozoal activity has been scarcely documented. The study performed
herein, demonstrated how multidisciplinary applications involving machine learning could
represent a valuable tool in predicting the bioactive component in complex mixtures.
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2. Results and Discussion

As previously reported, the analyses of 45 samples of EOs were included, which were
obtained from 16 families, 33 species, and 408 different identified compounds [19]. Figure 1
represents the major compound class, as the components identified as main compounds in
the different studied EOs previously reported [17].

Figure 1. Schematic representation of chemical composition of analyzed EOs. Graphic represent the
distribution of total components described for EOs; while list of compounds corresponds to main
compounds identified in the EOs.

The dataset of 45 EOs was analyzed to find a chemical pattern between the EOs
and antiprotozoal activity, including three activities: antiplasmodial, antileishmanial and
antitrypanosomal. The analysis started with the use of the SOM, where the chemical
composition of the 45 EOs was used as information to find patterns with the antiparasitic
activity. Among them, 21 had some of the analyzed activities (antiplasmodial, antileish-
manial and antitrypanosomal), with median inhibitory concentrations (IC50) in in-vitro
cultures < 100 µg/mL. The remaining EOs (24) had no antiprotozoal activity or activity had
not been reported.

In the generated map, the hit rate was higher than 84%. The SOM validation was
then performed using the 5-fold external cross-validation technique [32,33]; this means
that the entire dataset is partitioned five times into a modeling set (training set) including
80% of the compounds in the set, and the external cross-validation data set, comprising the
remaining 20% of the compounds in the data set. After this, only the modeling set is used
to build the models and then the models are validated with the external cross-validation
technique. In this sense, the dataset was subdivided into five training groups and five test
groups, always keeping the ratio between active and not reported EOs. The validation
results are described in Table 1.
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Table 1. Accuracy statistics of the training and tests groups of the 5-fold external cross-validation of
the Self-Organizing map (SOM).

Classification of EOs
Training

Average
1 2 3 4 5

True positive rate 0.90 0.95 0.99 0.90 0.80 0.91
True negative rate 0.70 0.65 0.68 0.70 0.75 0.71

Accuracy 0.81 0.80 0.83 0.81 0.78 0.81

Classification of EOs
Test

Average
1 2 3 4 5

True positive rate 0.60 0.60 0.95 0.60 0.99 0.75
True negative rate 0.75 0.75 0.70 0.95 0.80 0.80

Accuracy 0.67 0.67 0.83 0.77 0.90 0.78

Analyzing Table 1, we see that the hit rate for true positive rate (EOs active) and true
negative rate (EOs that did not display antiprotozoal activity or had not been reported)
both in training sets and in test sets were higher than 0.7, showing that the SOM model is
robust. Model accuracy assessment gives information about the overall performance of the
model, indicating the overall hit rate. The hit rate is the rate that evaluates how well the
model correctly classified the EOs. Accuracy values vary between 0 and 1. Models with
accuracy rate closer to 1 represents the higher model’s hit rate; while an accuracy rate equal
to or greater than 0.7 is considered models of optimal performance [23,27].

The SOM managed to find a chemical pattern between the chemical composition of
EOs and antiprotozoal activity. In parallel, we chose to check if this chemical pattern is
also found by using a supervised algorithm, known as RF. The RF model was generated
using the 5-fold external cross-validation technique [32,33]; this means that the entire
data set is partitioned five times into a modeling set (training set) including 80% of the
compounds the set, and the external cross validation data set, comprising the remaining
20% of the compounds the data set. After this, only the modeling set is used to build the
models and then the models are validated with the external cross validation technique.
Its performance was evaluated through the statistics such as specificity, sensitivity, which
obtained satisfactory values that corroborate the accuracy of the superior model, at 70%.
The performances can be observed in Table 2, these parameters are an average between the
five models. During the creation of the model, we also observed the domain of applicability
to ensure that the samples tested were within the chemical space of each model.

Table 2. Summary of the statistics parameters of the RF model (average between the five models).

Model Specificity Sensitivity Accuracy PPV NPV

RF 0.83 0.65 0.71 0.75 0.70
RF is random forest, PPV is positive predictive value, and NPV is negative predictive value.

In Table 3, we can see the accuracy and the global hit of both models and show that the
chemical same pattern could be obtained use an unsupervised (SOM) and supervised (RF)
machine learning. In both analyses, an accuracy rates higher than 0.7 were appreciated.

Figure 2 shows the U-matrix of the SOM, i.e., the visual analysis of the SOM. The
U-matrix is constructed by measuring the Euclidean distance in the vector space between
adjacent neurons [21,24,34]. It is possible to normalize the distances to be represented by
colors or in shades of gray [21,24]. What is represented in the U-Matrix are the clusters
mapped by the SOM and not the individual samples.
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Table 3. Summary of test averages corresponding to 5-fold cross-validation using the different
machine learning algorithms, self-organizing maps (SOM) and random forest (RF).

Classification of EOs
Average

SOM
(Unsupervised)

RF
(Supervised)

Active 0.85 0.75
Not reported 0.83 0.70

Accuracy 0.84 0.71

Molecules 2022, 27, x FOR PEER REVIEW 5 of 16 
 

 

Table 3. Summary of test averages corresponding to 5-fold cross-validation using the different ma-
chine learning algorithms, self-organizing maps (SOM) and random forest (RF). 

Classification of  
EOs 

Average 
SOM 

(Unsupervised) 
RF  

(Supervised) 
Active 0.85 0.75 

Not reported 0.83 0.70 
Accuracy 0.84 0.71 

Figure 2 shows the U-matrix of the SOM, i.e., the visual analysis of the SOM. The U-
matrix is constructed by measuring the Euclidean distance in the vector space between 
adjacent neurons [21,24,34]. It is possible to normalize the distances to be represented by 
colors or in shades of gray [21,24]. What is represented in the U-Matrix are the clusters 
mapped by the SOM and not the individual samples. 

 
Figure 2. Visualization of the self-organizing map (SOM) of essential oil (EO) data. In the upper 
corner we have the U-matrix. The left U-matrix does not identify the activities of the EOs while the 
right U-matrix identifies those activities by color: active is violet and yellow represents samples with 
no antiprotozoal activity or that have not been reported. The values shown on the scale between the 
two U-matrices represent the values of the percent of molecules present in the EOs, varying between 

Figure 2. Visualization of the self-organizing map (SOM) of essential oil (EO) data. In the upper
corner we have the U-matrix. The left U-matrix does not identify the activities of the EOs while the
right U-matrix identifies those activities by color: active is violet and yellow represents samples with
no antiprotozoal activity or that have not been reported. The values shown on the scale between
the two U-matrices represent the values of the percent of molecules present in the EOs, varying
between 1.19 and 7. These values were used to group the EOs by activities. At the bottom, we have
the principal component analysis (PCA) projection of the SOM measured by its two eigenvectors with
higher eigenvalues. The activities were plotted using the same identification colors as the U-matrix.
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Forty-five EOs were used for the SOM analysis. After mapping the SOM, the 45 EOs
were correctly grouped into active and inactive (EOs that do not display antiprotozoal
activity or have not been reported). There was also the separation of groups of greater
similarity and difference between them, taking into account the chemical composition
of the EOs, which were approximated or distanced in the SOM. Thus, in the U-matrix,
each square represents a group of EOs that are organized both by activity and chemical
similarity, with the purple ones relating to active EOs and the yellow ones to inactive EOs.

It is also worth noting that the U-matrix is a visual representation of the topological
mapping of the SOM, in this way, the white squares are valleys that separate the clusters
that were generated.

It is also possible to observe in Figure 2 the principal component analysis (PCA)
graph, which was generated from the correlation matrix of the EOs dataset used in the
generation of the SOM. PCA is used to reduce the dimensionality of the data and allow
a better visualization of the clusters, since it allows representing the input data as linear
combinations of their projections [23]. The PCA performed in this study has an explained
variance of 25.47%, that is, using only two variables it is possible to explain a quarter of the
entire variance.

While in the U-matrix we have the white squares representing valleys that distance
the clusters, in the PCA graph neighboring cartographic units are connected by lines to
make the map view clearer and more defined [23].

After the general analysis with the 45 EOs, the SOM was constructed considering
the chemical patterns of each sample. The most significant molecules for the chemical
pattern separation of active and not reported EOs obtained with SOM Toolbox tool are
shown in Figure 3. In this sense, 20 compounds present in the EOs were associated with
at least one of these three biological activities, of which 19 are terpenes (10 monoterpenes
and 9 sesquiterpenes) and one sulfur-containing compound. As is evident, a high pre-
dominance of terpene-type compounds was observed. Previously, the role of terpene
compounds has been reviewed, suggesting the promising therapeutic value against proto-
zoa parasites [35–37].

The identification of the most significant molecules is made by observing the region in
the U-matrix of active EOs. Once the region was identified, we observed the most expressive
molecules in that region. For example, when analyzing the U-matrix, we observe that in
the lower right corner, there is a region in purple color, indicating a region of active EOs.
Following the analysis, we will observe which molecules are most representative of that
region; thus, we have the molecules (E)-β-ocimene, (Z)-β-ocimene and β-phellandrene.
Note, in Figure 3, that the individual matrices of these molecules indicate their greater
presence in the lower right region, the region of active EOs.

In a general comparison of listed components between Figures 1 and 3, note that
only three compounds match as major component of EOs and as significant molecules
generated by SOM strategy: camphor, piperitone and safrole. In general, pharmacological
studies of EOs suggest that major identified components could be responsible for the
biological activity. However, some studies did not correlate the main compound with
the antiprotozoal effect [38–40]. Thus, using the present model, we selected molecules
present in EOs that can influence in the antiprotozoal activity of studied EOs, and could
suggest other EOs based in the complete chemical composition and not only in the major
components. In addition, it is interesting to specify that in the used data, camphor was
identified in 5 samples with concentrations between 0.1 to 17.1%, piperitone was present
in 7 samples ranging from 0.1 to 23.7%, and safrole was documented in 3 samples from
1.6 to 71.8% [17]. In regard to antiprotozoal activity, analysis of the samples with these
compounds with concentrations higher than 5%, we note that, for example, camphor was
reported in the EOs from Piper aduncum L. and Piper aduncum var. ossanum (C.DC.) Trel.
that showed antiplasmodial, antileishmanial and antitrypanosomal activity, as well as
piperitone. Safrole, in contrast, was identified in Piper auritum Kunt as major compound
and displayed antileishmanial activity [17]. These examples could corroborate the observed
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results from the SOM analysis and probably could highlight Piper as a promising genus to
study antiprotozoal properties, related with the main compounds or synergism resulting
from the presence of these components in this genus. In fact, antileishmanial potentialities
of the Piper genus was recently reviewed [41].
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Figure 3. The most significant molecules for the EOs by activity. In the upper left we have the
U-matrix of the self-organizing map generated in the study, with the upper U-matrix not identifying
the tribes and the lower U-matrix identifying the tribes by color; active is violet and yellow represents
samples with no antiprotozoal activity or that have not been reported.

A quick literature search in Pubmed Electronic Database was carried out with 20 iden-
tified compounds. The most important results confirm that: β-ocimene and safrole
have shown activity against Trypanosoma brucei with IC50 values of 1.1 µg/mL [42] and
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18.4 µg/mL [43], respectively; while methyleugenol had an IC50 of 5.7 µg/mL against
Plasmodium falciparum [44]. However, it was noted that several of the identified compounds
were not evaluated against these protozoa parasites, which could be addressed in further
screening assays.

Nevertheless, several studies in the literature have already confirmed the antiparasitic
action of EOs with identified compounds obtained from plants in other geographical
locations, which is summarized in Table 4 together with results of EOs from Cuban plants
(supplementary material). The higher number of reports from Cuban and other EOs was
found for camphor. For example, antiprotozoal activity was evaluated for EOs from Cuban
plants against Plasmodium falciparum, Leishmania spp. and Trypanosoma spp. from Alpinia
zerumbet (Pers.) B. L. Burtt & R. M. Smith [45], Piper aduncum L. [46] and Piper ossanum
(C.DC.) Trel [47]; while the rest of EOs displayed activity only against kinetoplastid parasites
from Alpinia speciosa K. Schum. [39], Artemisia absinthium L. [42], Piper cubeba L. [48], and
Thymus hirtus sp. algeriensis Boiss. et Reut [30], which camphor proved to be one of the
major substances in all included samples.

However, although in the literature, piperitone was only found in an EO from Benin
with antitrypanosomal and antiplasmodial activity [49], in Cuban samples, it was found in
higher concentrations of EOs (19 to 24%) that showed a broad spectrum of antiprotozoal
effects mainly from Piper species [46,47]. In contrast, a diverse number of studies from
worldwide plants, EOs with germacrene D and with antikinetoplastid activity correlated
with antiplasmodial activity shown by Cuban EOs with this compound [50].

Table 4. In vitro antiprotozoal profile of Cuban and according literature review of EOs that present
identified compounds in this study (previous shown in Figure 3).

Compound Country Plant Compound % Targeted Protozoa (Result) Ref.

(E)-β-
Ocimene

Brazil

Annona vepretorum
Mart. 6.8% Trypanosoma cruzi (IC50 = 32 µg/mL) [51]

Syzygium cumini (L.)
Skeels. 11.7% Leishmania amazonensis (IC50 = 60 mg/L) [52]

Xylopia frutescens
Aubl. 6.8% Trypanosoma cruzi (IC50 = 15 to 30 µg/mL) [53]

Cuba *

Bursera graveolens
Triana & Planch 13% Leishmania amazonensis (IC50 = 36.7 mg/L) [54]

Piper auritum Kunt 0.49%

Leishmania major (IC50 = 29.1 µg/mL)
Leishmania mexicana (IC50 = 63.3 µg/mL)

Leishmania braziliensis (IC50 = 52.1 µg/mL)
Leishmania donovani (IC50 = 12.8 µg/mL)

[55]

(Z)-β-
Ocimene

Brazil Syzygium cumini (L.)
Skeels. 29% Leishmania amazonensis (60 mg/L) [53]

Cuba *
Bursera graveolens
Triana & Planch 0.9% Leishmania amazonensis (IC50 = 36.7 mg/L) [54]

Piper ossanum
(C.DC.) Trel 0.14%

Plasmodium falciparum (IC50 = 1.5 µg/mL)
Trypanosoma brucei (IC50 = 8.1 µg/mL)
Trypanosoma cruzi (IC50 = 8.0 µg/mL)

Leishmania amazonensis (IC50 = 19.3 µg/mL)

[47]

β-
Phellandrene

Cameroon Ocimum
gratissimum L. 21.1%

Plasmodium berghei (at 200, 300 and 500 mg/kg
caused a suppression of parasitaemia of 55.0%,

75.2% and 77.8%, respectively)
[56]

Cuba *
Bixa orellana L. 0.2% Leishmania amazonensis (8.5 mg/L) [57]

Piper ossanum
(C.DC.) Trel 2.1%

Plasmodium falciparum (IC50 = 2.8 µg/mL)
Trypanosoma brucei (IC50 = 8.4 µg/mL)
Trypanosoma cruzi (IC50 = 8.6 µg/mL)

[47]



Molecules 2022, 27, 1366 9 of 15

Table 4. Cont.

Compound Country Plant Compound % Targeted Protozoa (Result) Ref.

Camphor

Brazil

Alpinia speciosa K.
Schum 17.1% Trypanosoma cruzi (IC50 = 92 µg/mL)

Leishmania brasiliensis (IC50 = 67 µg/mL) [58]

Ocotea odorifera (Vell)
Rohwer 6.5% Leishmania amazonensis (IC50 = 11.7 µg/mL) [59]

Piper cubeba L 5.6% Trypanosoma cruzi (IC50 = 87.9 µg/mL) [40]

Cuba *

Alpinia zerumbet (Pers.)
B.L.Burtt & R.M.Smith 0.1% Plasmodium falciparum (IC50 = 66.2 µg/mL) [45]

Piper aduncum L. 17.1%
Leishmania amazonensis (IC50 = 23.8 µg/mL)

Leishmania donovani (IC50 = 7.7 µg/mL)
Leishmania infantum (IC50 = 8.1 µg/mL)

[46]

Piper ossanum (C.DC.)
Trel 13.8 and 9.4%

Plasmodium falciparum (IC50 = 1.5 and 2.8 µg/mL)
Trypanosoma brucei (IC50 = 8.1 and 8.4 µg/mL)
Trypanosoma cruzi (IC50 = 8.0 and 8.6 µg/mL)

[47]

Ethiopia Artemisia absinthium L. 27.4% Leishmania aethiopica (IC50 = 8 µg/mL)
Leishmania donovani (IC50 = 42 µg/mL) [60]

Morocco Rosmarinus officinalis L. 18.7% Leishmania major (IC50 = 1.2 µg/mL) [61]

Spain

Artemisia absinthium L. 4.5% Trypanosoma cruzi (84% of inhibition at 200 µg/mL) [62]

Artemisia pedemontana
subsp. assoana (Willk.)

Rivas Mart.
7.7% Trypanosoma cruzi (20 to 70% of inhibition at

200 µg/mL) [62]

Turkey Salvia recognita Fisch.
& Meyer 42% Plasmodium falciparum (IC50 = 17 to 12 µg/mL) [63]

Tunisia
Thymus hirtus sp.
algeriensis Boiss.

et Reut
13.8% Leishmania major (IC50 = 0.43 µg/mL)

Leishmania infantum (IC50 = 0.25 µg/mL) [39]

Germacrene
D

Brazil

Casearia sylvestris Sw. 19.6% Leishmania amazonensis (IC50 = 24.2 µg/mL) [64]

Eugenia gracillima
Kiaersk. 16.1% Leishmania braziliensis (IC50 = 74.6 µg/mL)

Leishmania infantum (IC50 = 80.4 µg/mL) [65]

Guatteria australis A.
St.-Hil. 22.2% Leishmania infantum (IC50 = 30.7 µg/mL) [66]

Lantana camara L. 11.7% Trypanosoma cruzi (IC50 = 201.94 µg/mL)
Leishmania braziliensis (IC50 = 72.31 µg/mL) [67]

Melampodium
divaricatum (Rich. ex

Rich.) DC.
12.7% Leishmania amazonensis (IC50 = 10.7 µg/mL) [64]

Piper cernuum Vell. 12.7% Leishmania amazonensis (Infection index of 115 at
10 µg/mL) [68]

Piper duckei C. DC. 14.7% Leishmania amazonensis (IC50 = 42–46 µg/mL)
Leishmania guyanensis (IC50 = 15.2 µg/mL) [69]

Vernonia polyanthes
(Spreng.) Vega & M.

Dematteis
4.3% Leishmania infantum (IC50 = 19.4 µg/mL) [70]

Xylopia frutescens Aubl. 17.8% Trypanosoma cruzi (IC50 = 15 to 30 µg/mL) [53]

Cuba * Tagetes lucida Cav. 0.3% Plasmodium berghei (IC50 = 72 µg/mL) [50]
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Table 4. Cont.

Compound Country Plant Compound % Targeted Protozoa (Result) Ref.

Methyl
eugenol

Brazil

Aniba canelilla (H.B.K.)
Mez 14.8% Trypanosoma evansi (Growth inhibition at 0.5%,

1.0% and 2.0%) [71]

Hypenia salzmannii
(Benth.) Harley. 5.6% Trypanosoma cruzi (IC50 = 35–42 µg/mL) [72]

Cuba * Piper auritum Kunt 0.6%

Leishmania major (IC50 = 29.1 µg/mL)
Leishmania mexicana (IC50 = 63.3 µg/mL)

Leishmania braziliensis (IC50 = 52.1 µg/mL)
Leishmania donovani (IC50 = 12.8 µg/mL)

[55]

Bhutan Pleurospermum amabile
W.W.Smith, 3.8% Plasmodium falciparum (IC50 = 79 µg/mL) [73]

Piperitone

Benin Cymbopogon
schoenantus Spreng. 60.3% Trypanosoma brucei (IC50 = 2.1 µg/mL)

Plasmodium falciparum (IC50 = 43.1 µg/mL) [49]

Cuba *

Alpinia zerumbet
(Pers.)B.L.Burtt&R.M.Smith 0.1% Plasmodium falciparum (IC50 = 71.4 µg/mL) [45]

Bursera graveolens
Triana & Planch 0.1% Leishmania amazonensis (IC50 = 36.7 mg/L) [54]

Piper aduncum L. 23.7%
Leishmania amazonensis (IC50 = 23.8 µg/mL)

Leishmania donovani (IC50 = 7.7 µg/mL)
Leishmania infantum (IC50 = 8.1 µg/mL)

[46]

Piper ossanum (C.DC.)
Trel 20.1 and 19.0%

Plasmodium falciparum (IC50 = 1.5 and 2.8 µg/mL)
Trypanosoma brucei (IC50 = 8.1 and 8.4 µg/mL)
Trypanosoma cruzi (IC50 = 8.0 and 8.6 µg/mL)

[47]

Safrole

Brazil

Myroxylon peruiferum
L.f. 8.3% Leishmania amazonensis (IC50 = 54–162 µg/mL) [74]

Ocotea odorifera (Vell)
Rohwer 6.5% Leishmania amazonensis (IC50 = 11.7 µg/mL) [59]

Cuba * Piper auritum Kunt 71.8%

Leishmania major (IC50 = 29.1 µg/mL)
Leishmania mexicana (IC50 = 63.3 µg/mL)

Leishmania braziliensis (IC50 = 52.1 µg/mL)
Leishmania donovani (IC50 = 12.8 µg/mL)

[75]

* Data of EOs from Cuba used in this study.

3. Materials and Methods
3.1. Essential Oils Database

The 31 articles previously selected and analyzed by Monzote et al. [19] were used.
A database with identified compounds with a concentration > 0.1% were performed and
stored in Excel spreadsheet, which traces were not included. In parallel, the described
pharmacological properties to each EO were assigned.

3.2. Machine Learning Analysis
3.2.1. Self-Organizing Maps (SOMs)

The database contained information on 45 essential oils, with chemical composition
and biological activity. For the realization of the neural maps, the information of the compo-
sition of the each EO from the dataset was used like descriptors. The chemical components
were analyzed with SOMs in Matlab 6.5 and SOM Toolbox 2.0 [24]. The SOM Toolbox tool
is a set of Matlab functions that can be used for the elaboration and implementation of
neural networks, since it contains functions for the creation, visualization, and analysis
of SOMs.

The data set was presented to the network before any adjustments were made. Sub-
sequently, the data group was partitioned according to the regions of the weight vectors
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of the map, in each training stage. Then, the correct prediction of these sets and the total
correct predictions of the compounds were evaluated. In the most relevant models, the
set was divided into training and test sets to assess the forecasting capacity. Training and
test performance were assessed by calculating the proportion of the number of samples
correctly classified by SOM. For each map, 5 cross-validations were performed, being
partitioned into 80% training and 20% testing. In the SOM, sites containing molecules
for each descriptor were identified to highlight existing chemical patterns. The SOM was
generated with a 4 × 6 rectangular GRID.

3.2.2. Principal Component Analysis (PCA)

PCA analysis was calculated using the SOM toolbox 2.0 [24]. The utilization of PCA
for dimension reduction lies in the fact that the PCs are generated so that they explain
maximal amounts of variance [27].

The PCA was calculated using the database contained information on 45 essential oils.

3.2.3. Random Forest Model

Knime 4.4.1 software (KNIME 4.4.1 the Konstanz Information Miner Copyright, 2021,
www.knime.org, last accessed on 14 February 2022) [76,77] was used to perform the analyses
and to generate the model, in silico. The EOs dataset were divided using a “Partitioning”
tool, with the “Stratified sample” option, separated between training and testing datasets,
which represented 80% and 20% of all compounds, respectively. Molecules in the training
and testing datasets were randomly selected, but the same proportions of active and
not reported substances were maintained for both databases. The information of the
composition of the EOs was used like descriptors.

The model utilized a “5-fold external cross-validation” procedure and the Random
Forest (RF) algorithm. The RF parameters selected for all models generated 100 total forests
to be built, and −5,440,374,124,525,988,069 static random seeds (get reproducible results)
were generated using random numbers for the model.

The external performances of the selected models were analyzed for sensitivity (true
positive rate, which represents the active rate), specificity (true negative rate, which repre-
sents the inactive rate), and accuracy (general predictability).

The Applicability domain (APD) corresponds to the chemical space that surrounds
the descriptors of the molecules used in the construction of the model. In this way, the
applicability domain will provide information about the similarity between what is being
tested and what was used to build the model [78–80].

The APD was used to assess whether predictions for the compounds in each dataset
were reliable. The APD is based on Euclidean distances, and measures of similarity between
the training set descriptors are used to define the APD. Therefore, if a compound in the test
set has distances and similarities beyond the APD limit, its prediction will not be reliable.
APD can be calculated using the following formula:

APD = d + Zσ (1)

where d and σ are the Euclidean distances for the mean and standard deviation of the
compounds in the training set, respectively. Z is an empirical cutoff value, which was set to
0.5 in this study [81].

4. Conclusions

Scientific studies corroborate the results found in this study. Thus, this study of EO
analysis establishes a way to find chemical pattern between EOs and antiparasitic activity
(antileishmanial, antitrypanosomal and antimalarial). This finding makes it possible to di-
rect studies and biological tests for EOs that have antiparasitic activity more effectively and
with less time and financial cost. In particular, we strongly suggest further antiprotozoal
studies with EOs from species of the Piper genus and the pure compound camphor taking
into account data from Cuban EOs. Nevertheless, machine learning analysis studies will be

www.knime.org
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interesting for EOs from different geographical locations to predict bioactive components
with potential antiplasmodial, antileishmanial, and antitrypanosomal activity.

Supplementary Materials: The following are available online, Table S1: Database of essential oils of
Cuban plants.
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