octubre 2020 Archives

https://especialidades.sld.cu/inmunologia/files/2020/03/Logo-SCI-2.jpg

La Sociedad Cubana de Inmunología apoya la lucha internacional contra la pandemia de COVID-19, y presenta una relación de recursos de información relacionados con la respuesta inmune a SARS-CoV-2. Los artículos que siguen a continuación están disponibles a texto completo, publicados desde el 1º de marzo de 2020. Agradeceremos las contribuciones de otros trabajos que sean igualmente de libre acceso.

168. Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis. BMJ 2020;370:m2516.
167. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J Exp Med 7 December 2020;217(12):e20201241.
166. A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. J Immunol August 15, 2020;205(4)915-922.
165. A Case for Targeting Th17 Cells and IL-17A in SARS-CoV-2 Infections. J Immunol August 15, 2020;205(4)892-898.
164. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front. Immunol., 16 June 2020; https://doi.org/10.3389/fimmu.2020.01441.

163. Demand for BCG Vaccine Due to Unproven Claims of its Role in Preventing COVID-19 Is Causing Shortages of Vaccines for Infants in Japan. Pediatr Infect Dis J. 2020 Jul;39(7):e159–e160.
162. Abnormal immunity of non-survivors with COVID-19: predictors for mortality. Infect Dis Poverty. 2020;9:108.
161. Comparison of different serological assays for SARS-CoV-2 in real life. J Clin Virol. 2020 Aug 2:104569; doi: 10.1016/j.jcv.2020.104569.
160. Evaluation of a novel multiplexed assay for determining IgG levels and functional activity to SARS-CoV-2. J Clin Virol. 2020 Aug 2:104572; doi: 10.1016/j.jcv.2020.104572.
159. The influence of ABO blood groups on COVID-19 susceptibility and severity: a molecular hypothesis based on carbohydrate-carbohydrate interactions. Med Hypotheses. 2020 Aug 2:110155; doi: 10.1016/j.mehy.2020.110155.
158. Does immunosuppressive treatment entail an additional risk for children with rheumatic diseases? A survey-based study in the era of COVID-19. Rheumatol Int. 2020 Aug 2:1–11; doi: 10.1007/s00296-020-04663-9.
157. Anaphylactic shock following diagnosis of COVID-19. Ann Allergy Asthma Immunol. 2020 Aug 1; doi: 10.1016/j.anai.2020.07.032.
156. Targeting SARS-CoV2 Spike Protein Receptor Binding Domain by Therapeutic Antibodies. Biomed Pharmacother. 2020 Aug 1:110559; doi: 10.1016/j.biopha.2020.110559
155. Establishing a Unified COVID-19 “Immunome”: Integrating Coronavirus Pathogenesis and Host Immunopathology. Frontiers in Immunology, 2020;11:1642.

154. SCHOOL of nature: ligand-independent immunomodulatory peptides. Drug Discov Today. 2020 May 12; doi: 10.1016/j.drudis.2020.05.005
153. Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation. Cell Metab. 2020 May 12; doi: 10.1016/j.cmet.2020.04.015
152. CD4+ T Cells at the Center of Inflammaging. Cell Metab. 2020 May 12; doi: 10.1016/j.cmet.2020.04.016
151. Convalescent plasma: A possible treatment protocol for COVID- 19 patients suffering from diabetes or underlying liver diseases. Diabetes Metab Syndr. 2020 May 12; doi: 10.1016/j.dsx.2020.05.023
150. Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes Metab Syndr. 2020 May 12; doi: 10.1016/j.dsx.2020.05.025
149. Is aberrant CD8+ T cell activation by hypertension associated with cardiac injury in severe cases of COVID-19? Cell Mol Immunol. 2020 May 12:1–2; doi: 10.1038/s41423-020-0454-3
148. Role of oxidized LDL-induced “trained macrophages” in the pathogenesis of COVID-19 and benefits of pioglitazone: A hypothesis. Diabetes Metab Syndr. 2020 May 12; doi: 10.1016/j.dsx.2020.05.007
147. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020 May 13:198018; doi: 10.1016/j.virusres.2020.198018
146. A Review: Does Complement or the Contact System Have a Role in Protection or Pathogenesis of COVID-19? Pulm Ther. 2020 May 13:1–8; doi: 10.1007/s41030-020-00118-5
145. B-cell depleting therapies may affect susceptibility to acute respiratory illness among patients with Multiple Sclerosis during the early COVID-19 epidemic in Iran. Mult Scler Relat Disord. 2020 May 13:102195; doi: 10.1016/j.msard.2020.102195
144. SARS-CoV-2-specific antibody detection in healthcare workers in Germany with direct contact to COVID-19 patients. J Clin Virol. 2020 May 13:104437; doi: 10.1016/j.jcv.2020.104437
143. The Promise and Peril of Natural Killer Cell Therapies in Pulmonary Infection. Immunity. 2020 May 13; doi: 10.1016/j.immuni.2020.04.018
142. Targeting T-cell senescence and cytokine storm with rapamycin to prevent severe progression in COVID-19. Clin Immunol. 2020 May 13:108464; doi: 10.1016/j.clim.2020.108464
141. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia. Eur J Intern Med. 2020 May 13; doi: 10.1016/j.ejim.2020.05.009
140. A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection. Cell. 2020 May 13; doi: 10.1016/j.cell.2020.05.016
139. The Challenges of Vaccine Development against a New Virus during a Pandemic. Cell Host Microbe. 2020 May 13;27(5):699–703.
138. Rational Vaccine Design in the Time of COVID-19. Cell Host Microbe. 2020 May 13;27(5):695–698.
137. Decreased T cell populations contribute to the increased severity of COVID-19. Clin Chim Acta. 2020 May 13; doi: 10.1016/j.cca.2020.05.019
136. Identification of SARS-CoV RBD-targeting monoclonal antibodies with cross-reactive or neutralizing activity against SARS-CoV-2. Antiviral Res. 2020 May 13:104820; doi: 10.1016/j.antiviral.2020.104820
135. Predicción de la inmunogenicidad de la proteína del SARS-CoV-2 responsable de la infección COVID-19 en humanos. Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta. 2020;45(3).
134. Inmunopatogenia en la evolución del paciente grave por la COVID-19. Rev. Electron. Zoilo E. Marinello., 2020;45.
133. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020; doi: 10.1016/j.autrev.2020.102567
132. Trained immunity: a tool for reducing susceptibility and severity of SARS-CoV-2 infection. Cell. 2020; doi: 10.1016/j.cell.2020.04.042
131. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe. 2020; doi: 10.1016/j.chom.2020.04.017
130. Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chem Biol Interact. 2020; doi: 10.1016/j.cbi.2020.109125
129. Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J Clin Virol. 2020; doi: 10.1016/j.jcv.2020.104413
128. Immune dysfunction leads to mortality and organ injury in patients with COVID-19 in China: insights from ERS-COVID-19 study. Signal Transduct Target Ther. 2020;5:62.

Categorizado en Uncategorized por el #